

Facilitating Life Science Innovations to Serve Unmet Medical Needs

CORPORATE PRESENTATION

Aptorum's 3 Core Pillars

- Aptorum's 3 core pillars of therapeutic discovery and development, focused on novel therapeutics for unmet medical needs
- Ever expanding universe of proprietary intellectual property in relation to our pipeline products

SMART-ACT™: Executive Summary

Unmet or Orphan Diseases

- FDA-approved small molecules
- Expedited Phase I through existing safety data on the approved drug
- Greatly reduces duration of drug development from 12 years to 4 years
- Patent protection through indication, reformulation and combination patents

Drug Repurposing

- FDA fast track procedures
- Small scale clinical trials
- 7 years of market exclusivity in parallel to patent protections
- 10% combined incidence in the US
- 95% orphan diseases without treatment
- 7000 orphan diseases & rising

Rapid generation of latestage clinical candidates

Systematic approach to rare disease

© Copyright 2020 Aptorum Group Limited

SMART-ACT™: Pipeline Workflow

© Copyright 2020 Aptorum Group Limited

Orphan Disease Selection

High priority

7000+ Orphan Diseases + Unmet

Patient population definition:

- US: <200,000 patients
- EU: <5 in 10,000
- Japan: <50,000 patients
- China: defined list of 121 rare diseases
- Coronavius

Disease selection criteria Life threatening disease High unmet need IP protection Market size Competitive landscape Clinical trial design Paediatric disease By region Target selection Disease knowledge

SMART-ACT[™] High Priority Unmet/Orphan Diseases

SMART-ACT™: Patent Strategy

© Copyright 2020 Aptorum Group Limited

SMART-ACT™: pipeline overview

Cu	rrent progress of pi	ipeline program	s: 🔶 Lead	Projects	→ Other Candidate	es 🔶 P	Projected ti	meline ^l
Note: all projected tim	Note: all projected timelines refer to the estimated commencement time of the indicated stages							
Pillar 1: SMART-ACT™ (SACT series) - Orphan disease drug repurposing platform								
Over 7,000 orp	Over 7,000 orphan diseases to be screened in the next 5 years IND 505(b)(2) filing ²							
Program	Indication	Mechanism	Computational Discovery	<i>In vitro</i> validation	Existing PhI/II clinical safety data ¹	<i>In vivo</i> validation	Bridging studies	PhII / III with limited population ³
SACT-1	Neuroblastoma	Drug Repurposing				Q4 2019		ready for clinical trial in 2H 2020
SACT-COV19	COVID-19	Drug Repurposing						
SACT-2	To be disclosed	Drug Repurposing						
SACT-3	To be disclosed	Drug Repurposing						

1. All projected timelines refer to the estimated commencement time of the indicated stages 2. Refers to the drug's existing Phase I/II safety data previously conducted by a third party. Does not refer to clinical trials conducted by Aptorum 3. Subject to FDA's approval on a case-by-case basis, a 505(b)(2) can rely in part on existing information from approved products (such as FDA's previous finding on safety and efficacy) or data in the public

• IP rights filed for all 3 programs

7

• Subject to the FDA's approval, IND-enabling studies and Phase I for repurposing approved drugs may be expedited

SACT-COV19

- Severe Acute Respiratory Syndrome Coronavirus 2 ("SARS-COV-2") is highly infectious and WHO has declared COVID-19 disease as a global pandemic;
- Mortality rates: SARS-COV-2 (4.1%) vs 2003 SARS-COV-1 (9.6%) vs 2012 MERS-COV (37%)^{Ref A}
- Multi-dimensional approach needed: Therapeutic + Vaccine + Diagnostics
- Aptorum Group initiates new strategic initiative targeting coronavirus, such as SARS-COV-2
- Deploying both a combination of drug repurposing (Smart-ACT™ Platform) and our infectious disease expertise (Acticule Platform)
- In collaboration with University of Hong Kong's Microbiology team who identified and subsequently sequenced the 2003 SARS-COV-1 virus

8

www.worldometers.info. Archived from the original on 31 January 2020 and retrieved 2 February 2020.;

Smith, Richard D. (2006). "Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication and management". Social Science & Medicine. 63 (12): 3113-3123.

https://www.mdpi.com/2076-0817/9/3/231/htm

Ref A:

SACT-COVI9: Targets and Candidates

2 Protein Targets

- 3CL-Protease:
 - 6LU7 the crystal structure of SARS-COV-2 main protease in complex with an inhibitor N3 $\,$
 - 3CL-Protease plays pivotal role in mediating viral replication and transcription functions through extensive proteolytic processing
- RNA dependent RNA Polymerase (RDRP)
 - Homolog (https://swissmodel.expasy.org/interactive/JDUya4/models/01)
 - An enzyme that catalyzes the replication of RNA from the RNA template

SACT-COV19: Methodology and Candidates

Methodology

- It is proposed that inhibition of 3CL-protease or RDRP can slow down/terminate the replication of coronavirus.
- There is an inhibitor/co-crystal ligand in 6LU7 protein structure that may imply the potential binding site of 3CL-protease, therefore can be considered as the binding site of 3CL-protease.
- On the other hand, it is reported that Gilead's remdesivir (nucleotide analog) showed positive effect to patients infected by SARS-COV-2. It will be considered as the positive control in our study.

Candidates

- Based on our Smart-ACT[™] selection process so far out of 2600+ approved small molecule library, at least 3 small molecule candidates have shown potential interference against the enzyme targets. Investigation to commence preclinical validation.
- Selected candidates have established safety, toxicity and PK profiles in prior human clinical trials potential to efficiently enter into human clinical trials subject to regulatory clearance.
- Patent applications have been submitted.

SACT-1 (neuroblastoma): market overview

SACT-1 targets neuroblastoma, a cancer that develops from nerve cells

Prevalence

11

- ~800 new cases every year and ~650 cases of neuroblastoma in children each year in the US averagely diagnosed between birth and 14 months³
- Accounts for ~15% of all cancer-related deaths in the pediatric population⁴
- Neuroblastoma 5 year survival rate: 40-50%³

Orphan drug designation⁵

- Neuroblastoma is a rare disease and drugs are qualified for orphan designation by the FDA
- Designated orphan drugs receive 7 years of market exclusivity
- Patents on reformulation, if granted, will provide up to 20 years of patent exclusivity from the application date in parallel to the 7-year market exclusivity

1. Pediatr Rev. 2018 Feb;39(2):57-67; 2. "Neuroblastoma Market Global Industry Perspective, Comprehensive Analysis, Size, Share, Growth, Trends, and Forecast 2019 – 2023"(2019). MRFR Research, 3. Curr Oncol Rep. 2009 Nov.11(6):431-8; https://www.cancer.net/cancer-types/neuroblastoma-childhood/statistics 4. Paediatr Drugs. 2011 Aug 1:13(4):245-55 5. https://www.fda.gov/about-fda/office-special-medical-programs/office-orphan-products-development.

SACT-1 : In vitro drug activity against neuroblastoma cell lines

- 48 drug candidate hits from the computational screen were evaluated *in vitro* for activity validation
- 1 candidate, SP055, was found to provide favorable anticancer activities in 4 different neuroblastoma cell lines

Control treatment on neuroblastoma cells

SP055 treatment on neuroblastoma cells

Drug candidates under SACT-1	ΙC ₅₀ [μΜ]
SP055	2.97

SACT-1: Synergistic effect of SP055 in combination with standard treatment

 Synergistic effect observed for SP055 in combination with standard treatment in 2 different neuroblastoma cell lines, as seen in the isobologram (left) and the Excess over Bliss (right)

SACT-1: SP055 safety & tolerability

FDA approved safety profile

- Did not show genotoxic potential even at the highest feasible concentration dose (*in vitro* and *in vivo*)
- In a phase IIb study over 2 years, all SP055 doses were safe and well tolerated
- No dose relationship between SP055 and adverse events (AE)

SP055	25mg/day (N=93)	75mg/day (N=95)	150mg/day (N=91)
Median treatment duration, weeks	101	100	100
Adverse events (AE)			
Any grade 2-4 AE at least possibly related to SP055	20%	20%	21%
AEs leading to discontinuation	9%	12%	14%
Any serious AE	13%	14%	10%
Deaths	0%	2%	0%

SACT-1: SP055 pharmacokinetics

FDA approved pharmacokinetics profile

- Data package can be potentially accepted by the FDA in our 505(b)(2) new drug application
- Relatively long half-life ($t_{1/2} = 43-55h$). Frequent dosing may not be required

SP055 pharmacokinetic parameter in humans	(N=19)
t _{max} , h	5
C _{max} , ng/ml	~300
AUC _{last} , ng·h/ml	~10,000
AUC _{inf} , ng·h/ml	~11,000
t _{1/2,term} , h	~48

SMART-ACT™: Priority Focus

Deep, prioritised pipeline of orphan diseases to be screened

• 3-5 drugs to reach ph2/3 confirmation study per year

	Orphan cancers	
Carcinoma of esophagus	Familial colorectal cancer	Malignant peripheral nerve sheath tumor
Carcinoma of gallbladder and extrahepatic biliary tract	Familial Melanoma	Neuroblastoma
Cholangiocarcinoma	Gastrointestinal stromal tumor	Non-Hodgkin Lymphoma
Epstein-Barr virus-associated gastric carcinoma	Glioblastoma	Rare carcinoma of pancreas
Erdheim-Chester Disease	Hereditary breast and ovarian cancer syndrome	Squamous cell carcinoma of the esophagus/lip
Ewing Sarcoma	Langerhans Cell Histiocytosis	Thyroid carcinoma

Genetic, Immune, Metabolic & Neurological Disorders							
Cystic fibrosis	Mastocytosis	Primary hyperoxaluria type 1					
Duchenne Muscular Dystrophy	Primary biliary cholangitis	Autosomal dominant familial amyotrophic lateral sclerosis					
Sickle cell disease	Glycogen storage disease type II	Chronic Inflammatory Demyelination Polyneuropathy					
Atypical hemolytic uremic syndrome	Mucopolysaccharidosis II	Primary erythromelalgia					
Hereditary angioedema	Mucopolysaccharidosis III	Idiopathic arthritis					

ALS pipeline overview

Cu	irrent progress of p	oipeline programs:	🔶 Lead Projects	s 🛛 🔶 Other Can	ndidates 🛛 🔶 Proje	cted timeline		
Note: all projected timelines refer to the estimated commencement time of the indicated stages								
Pillar 2: Acticule (ALS series) – Infectious diseases⁴								
Small mol	Small molecule, anti-virulence and non-bactericidal approach IND NDA							
Program	Indication	Discovery	Lead Optimization	IND enabling	Phase I	PhII/III based on LPAD pathway ¹		
ALS-4	Anti <i>S. aureus</i> (incl. MRSA)		+ oral form	nulation Q3 2019	2H 2020			
ALS-1	Anti Influenza A			Q4 2020	Hybrid stu	udy		
ALS-2	Gram+ bacteria				-voluntee -initial eff	-volunteers + patients -initial efficacy readout		
ALS-3	Gram+ bacteria)						

1. ALS-4's eligibility for the LPAD pathway is subject to the FDA's approval. Targeting other indications in Phase II may affect our valuation. QIDP status can be applied once we identify an indication

ALS4: Staph. Aureus Market Overview

ALS-4 is an anti-virulent, non-bactericidal drug candidate for Staphylococcus aureus infections including MRSA

Key Statistics of S. aureus

- Estimated 2 billion people carry S.aureus worldwide; 53 million people carry MRSA⁵
- c. 150,000+ S. aureus infections in US per year⁶ and up to 30% mortality rate⁷ and MRSA sepsis mortality rate maybe up to 55%⁸

Recent deals in infectious disease

- In 2014, Merck's acquisition of Cubist Pharmaceuticals, a large developer of antibiotics, for USD 8.4bn³
- In 2018, Roivant's licensing of Intron's Phase II asset for USD 667.5m in upfront and milestone payments⁴

1. Clin Microbiol Rev. 2012 Apr;25(2):362-86; 2. "Methicillin-resistant Staphylococcus Aureus (MRSA) Drugs Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2017-2025" (2018). Transparency market research; 3. https://dealbook.nytimes.com/2014/12/08/merck-agrees-to-acquire-drug-maker-cubist-for-9-5-billion/; 4. <u>https://www.prnewswire.com/news-releases/roivant-sciences-and-intron-bio-sign-licensing-dealfornovel-anti-superbugs-biologic-sal200-300753307.html. 5.</u> <u>Infections</u>". Keep Kids Healthy. Archived from <u>the original</u> on December 9. 2007. 6. <u>https://www.uptodete.com/contents/epidemiology-of-staphylococcus-aureus-bacteremia-in-adults</u>. 7. <u>https://www.ncbi.nlm.nih.gov/pubmed/22491776</u>. 8. Gurusamy, Kurinchi Selvan; Koti, Rahul; Toon, Clare D.; Wilson, Peter; Davidson, Brian R. (2013-08-20). "Antibiotic therapy for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in surgical wounds". The Cochrane Database of Systematic Reviews (8): CD009726.

ALS-4: Value Proposition

Antibiotic

- Antibiotic resistance in S. aureus has been discovered in most prescribed antibiotics for MRSA¹
- Broad spectrum and indiscriminate²
- Commonly affect normal flora, may lead to superinfection in case of drug resistance³

Anti-virulence (ALS-4)

- Not bactericidal, potentially less selective pressure and much less likely for bacteria to develop resistance^{4,5}
- "Disarms" the bacteria by reducing pathogenicity^{4,5,6}
- ✓ Bacterial clearing is mediated by host immunity^{4,5}

Directed against pathogen

1. Refer to "ALS-4: Approved Drugs for MRSA Infections" for complete set of sources; 2. P T. 2016 Feb; 41(2): 126–128; 3. J Infect Dis. 2018 Jan 30:217(4):628-636; 4. Based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing; 5. MBio. 2017 Sep 5;8(5). pii: e01224-17; 6. J Exp Med. 2005 Jul 18:202(2):209-15.

ALS-4: Approved Drugs for MRSA Infections

Frequently prescribed antibiotics for MRSA infections¹

Product (Company)	Antibiotic Class	Indication(s)	RoA	Dose	Cost of Treatment (duration)	Notes
Vancomycin (Generic)	Glycopeptide	Severe infections caused by MRSA	IV / oral*	2g/day	USD 101-144 (7-10 days)	 Currently, the most frequently prescribed antibiotic for MRSA suspected infections^{1,2} In clinical use for >60 years³, vancomycin-resistant <i>S. aureus</i> (VRSA) was first discovered in 2002⁴
Daptomycin (Merck)	Lipopeptide	ABSSSI <i>, S. aureus</i> bacteremia	IV	4-6mg/kg/day	USD 6,736-23,710 ⁵ (14-42 days)	 In clinical use since 2003⁶ Daptomycin resistance described in S. aureus as early as 2006⁷
Linezolid (Pfizer)	Oxazolidinone	ABSSSI, CABP, HABP, uSSSI	IV / oral	0.8-1.2g/day	IV: USD 1,920-5,376 Oral: USD 2,978- 11,429 (10-14 days)	 In clinical use since 2003⁸. Entirely synthetic, not expected to develop clinical resistance⁹, however Linezolid resistance encountered clinically since 2010⁹
Ceftaroline fosamil (Actavis)	Cephalosporin	ABSSSI, CABP	IV	1.2g/day	USD 1,831-5,127 (5- 14 days)	 In clinical use since 2010¹⁰ Ceftaroline resistance encountered clinically since 2016¹¹
Tigecycline (Pfizer)	Glycycycline	ABSSSI, CABP, CIAI	IV	0.1-0.2mg/day	USD 1,888-4,977 (5- 14 days)	 In clinical use since 2005¹² Tigecycline resistance encountered clinically in developing countries since 2017^{13,14}
Televancin (Theravance Biopharma)	Lipoglycopeptide	ABSSSI, HABP, VABP	IV	10mg/kg/day	USD 3,002-10,568 (7-21 days)	 In clinical use since 2009¹⁵ Vancomycin resistance leads to a 4-8x increase in telavancin MIC (minimum inhibitory concentration)¹⁶

ABSSSI: acute bacterial skin and skin structure infection: CABP: community-acquired bacterial pneumonia; HABP: hospital-acquired bacterial pneumonia; CIAI: complicated intra-abdominal infection: VABP: ventilator-associated bacterial pneumonia; * Only for intestinal infections: I. Reproduced from " Companies Take Aim at MRSA Infections" P T. 2016 Feb; 41(2): 126–128; 2. Clin Infect Dis. 2011 Feb 1;52(3):e18-55; 3. Clin Infect Dis. 2006 Jan 1;42 Suppl 1:S5-12; 4. Centers for Disease Control and Prevention. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-572_Cubicin.cfm; 7. Int J Antimicrob Agents. 2006 Oct:28(4):280-7; 8. FDA. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21-130s003_21132

ALS-4: Addressing the Shortfall of Vancomycin

Vancomycin

- Generic antibiotic that is the most frequently prescribed for MRSA-suspected infections^{1,2}
- After >60 years³ of clinical use, its use against *S. aureus* is becoming limited. Vancomycin has been shown to have slow bactericidal activity, poor anti-staphylococcal activity, poor tissue penetration, and high rates of infection relapse^{4,5,6,7,8,9}
- The shortcomings of Vancomycin has been compounded since the discovery of vancomycin-resistant S. aureus (VRSA) in 2002 and studies shown VRSA strain may exceed that 50% of the strain population¹⁰;
- Vancomycin is not orally bioavailable and must be administered intravenously in order to treat systemic infections^{11,12}. Oral vancomycin is only effective for treating local intestinal infections. Therefore, for MRSA-suspected infections oral vancomycin is only indicated for the treatment of pseudomembranous colitis

ALS-4: Potentially a complementary therapeutic to vancomycin

- Phase 1 clinical trials planned in N.America for 2020
- Clinical trials based on as a combination therapy to overcome the shortcomings of vancomycin
- ALS-4 can potentially complement other bactericidal antibiotics as well, therefore ALS-4 is not a direct competitor of antibiotics
- Synergistic effects of other drugs with vancomycin against MRSA has been demonstrated previously with β-lactam antibiotics and vancomycin¹³

1. "Companies Take Aim at MRSA Infections" P T. 2016 Feb; 41(2): 126–128; 2. Clin Infect Dis. 2017 Sep 1:45(5):601–8; 7. J Clin Microbiol. 2011 Oct;49(10):3669–72; 8. Clin Infect Dis. 2007 Sep 1:5;45 Suppl 3:S191–5; 9. J Clin Microbiol. 2004 Jun;42(6):2398–402; 10. Centers for Disease Control and Prevention. <u>https://www.cdc.gov/hai/settings/lab/vrsa_lab_search_containment.html</u>; and <u>https://aricjournal.biomedcentral.com/articles/10.1186/s13756-019-0585-4</u> 11. J Infect. 2018 Dec;77(6):489–495; 12. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019-2018 Nov 18; 13. J Clin Microbiol. 2016 Mar; 54(3): 565–568

ALS-4: mechanism of action

ALS-4

inhibits a key enzyme in the biosynthesis of staphyloxanthin¹

Figure adapted from MBio. 2017 Sep 5;8(5). pii: e01224-17.

The description of ALS-4 and related conclusory statements on ALS-4 on this slide are based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing.

ALS-4: mechanism of action

ALS-4

inhibits S. aureus pigment production with an $IC_{50} = 20nM$

ALS-4: oral formulation treatment in an MRSA survival study

ALS-4 rescues rats infected with a lethal dose of MRSA USA300 in a bacteremia model

- A lethal dose (10⁹ CFU) of MRSA was introduced through the tail vein
- ALS-4 was administered **orally** 30 minutes after infection for twice a day thereafter

ALS-4: oral formulation treatment in a non-lethal bacteremia model

ALS-4 is shown to greatly reduce organ bacterial count in a bacteremia animal model

- Rats were challenged with a non-lethal dose (10⁷ CFU) of MRSA through the tail vein
- In order to simulate a more realistic clinical scenario, treatment was introduced 14-days after infection, where ALS-4 was administered orally twice a day at 10mg/kg per animal

Resistance of *S. aureus* USA 300(lac) to clindamycin after various treatment conditions

Pre-treatment

Tubes	Day 1-4	Day 6-10	
1	DMSO	DMSO	
2	Ery 16 + CLI 0.12 μg/ml	Ery 16	(Clindamycin withdrawn between day 5-10)
3	ALS-4 1µM	ALS-4 1µM	

Clindamycin resistance test after pre-treatment (BHI medium with 5 x 10⁴/well bacterial inoculum)

- - Clindamycin resistance (MIC from 0.12 µg/ml to >5 µg/ml) appeared rapidly after a 10-day intermittent treatment
- Controls without the addition of antibiotics showed no resistance to clindamycin

Based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing. Applies to all content on this slide.

Resistance of *S. aureus* USA 300(lac) to clindamycin after various treatment conditions

No bacterial resistance to ALS-4 detected after continuous incubation of the bacteria in the presence of 1 μ M ALS-4 for 11 days

Based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing. Applies to all content on this slide.

© Copyright 2020 Aptorum Group Limited

Landscape Overview: The Human Gut Microbiota

- Contains 100s of species of microbes
- Constantly producing 1000s of active metabolites
- Some metabolites provides immunological and metabolic benefits
- Dysbiosis (microbial imbalance) is a significant factor in disease

Source: Lancet. 2003 Feb 8;361(9356):512-9; 2. Science. 2012 Jun 8;336(6086):1268-73; 3. Gastroenterology. 2014 May;146(6):1547-53

Claves pipeline overview

Cu	irrent progress of p	pipeline programs:	🔶 Lead Projects	s 🛛 🔶 Other Car	ndidates 🔶 Proje	cted timeline			
Note: all projecte	Note: all projected timelines refer to the estimated commencement time of the indicated stages								
Pillar 3: Claves (CLS series) - Microbiota									
Large molecule approach. Over 70 targets / indications IND ND									
Program	Indication	Discovery	Lead Optimization	IND enabling	Phase I	Phase II / III			
CLS-1	Obesity		Q4 2019	Q2 2020	Q4 2020				
CLS-2	To be disclosed								
CLS-3	To be disclosed								

CLS-1: efficacy in a mouse model

CLS-1 treatment significantly reduces body weight in mice

Based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing. Applies to all content on this slide.

© Copyright 2020 Aptorum Group Limited

CLS-1: toxicology (gut histology and inflammatory markers)

Mucosa and Inflammatory Markers

CLS-1 does not upregulate inflammatory markers

Based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing. Applies to all content on this slide.

CLS-1: toxicology (liver and renal functions)

Liver and Renal Functions

CLS-1 does not interfere with liver and renal functions

Based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing. Applies to all content on this slide.

© Copyright 2020 Aptorum Group Limited

NLS-2 Woman's Health Supplement: Market Overview

- postmenopausal women projected by the year 2030¹
- 85% of postmenopausal women experience menopause-related symptoms in their lifetime²

USD **2.5** bn

USD 17.1 bn

Value of the global menopause treatment market in 2019³ Value of the global isoflavone supplement market in 2019⁴

CAGR global menopause treatment market (2017-2023)³

1. World Health Technical Report Series. Research on the Menopause in the 1990's, https://apps.who.int/iris/bitstream/handle/10665/41841/WHO_TRS_866.pdf?sequence=18isAllowed=y; 2. Symptoms during the perimenopause: prevalence, severity, trajectory, and significance in women's lives, https://www.amjmed.com/article/S0002-9343(05)00885-5/fulltext; 3. Calculated based on the forecasted market size of USD 3bn by 2023 and a forecasted CAGR of 4.2% between 2017-2023. Menopause Treatment Market 2019: https://www.reuters.com/brandfeatures/venture-capital/article?id=119980; 4. Isoflavones Market Size To Reach USD 50.06 Billion By 2025. https://www.grandviewresearch.com/press-release/global-isoflavones-market. (Isoflavones are naturally occurring compounds found in a wide variety of plants. The isoflavones supplement market is the main menopausal supplement market.)

© Copyright 2020 Aptorum Group Limited

NLS-2: Executive Summary

NLS-2¹

- NLS-2 is a dietary supplement for the relief of menopausal symptoms.
- The bioactive component of NLS-2 is DOI, a novel non-hormonal compound extracted from Chinese Yam
- DOI significantly increased estradiol biosynthesis and aromatase expression in granulosa cells in vitro and in vivo (rat animal model)
- Osteoporosis is frequently associated with menopause. DOI increases the apparent bone mineral density, bone volume fraction and trabecular thickness in an *in vivo* rat model
- DOI acts in a tissue-specific manner. Upregulation of aromatase, an enzyme involved in the production of estrogen, by DOI was found in ovary but not in other tissue
- DOI does not cause toxicity in vitro based on cell viability in the MTT assay
- Targeting to launch as a dietary supplement in Q1 2020

Timeline

- NLS-2 supplement is commercialised in Hong Kong 2020 as announced in Q1 2020
- Manufacturing has commenced in Canada
- Additional Target markets for 2020 will include China, UK, Europe, Canada and US (subject to registration)

1. Lancet. 2003 Feb 8:361(9356):512-9; 2. Based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing; 3. Data available in this presentation

DOI- A Chinese Yam Extract To Address Menopausal Syndrome

DOI, a novel bioactive peptide with estrogen-stimulating activity¹

- Discovered an estrogen-stimulating activity from an extract obtained from the Chinese yam, Dioscorea opposita Thunb
- Identified and isolated a novel bioactive component, DOI, which conferred the estrogen-stimulating activity¹
- DOI significantly increased estradiol biosynthesis and aromatase expression in granulosa cells
- The upregulation of aromatase, an enzyme involved in the production of estrogen, by DOI was found in ovary but not in other cells/tissues

(a) Stimulatory activity of DOI on estrogen biosynthesis in granulosa cells. Protein expression of (b) aromatase and (c) follicle-stimulating hormone receptor (FSHR) in ovarian granulosa cells. Results are expressed as means ± SEM (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001 compared with the control group (unpaired t-test). (Adopted from Science Report (5:10179, 2015))

1. Sci. Rep. 5, 10179; doi: 10.1038/srep10179 (2015). This source applies to all the content on this slide.

DOI- A Chinese Yam Extract To Address Menopausal Syndrome

DOI and bone density¹

• DOI in old female SD rats demonstrated an increase in the apparent bone mineral density, bone volume fraction and trabecular thickness by microCT scanning

(a) Serum estradiol, (b) apparent trabecular bone mineral density, (c) bone volume fraction of Sprague Dawley rats after treatment with DOI for 2, 4, and 6 weeks. Results are expressed as means ± SEM (n = 6; except Premarin group, where n = 3). *p < 0.05, **p < 0.01 compared with the control group (unpaired t-test).

1. Sci. Rep. 5, 10179; doi: 10.1038/srep10179 (2015). This source applies to all the content on this slide.

Regulatory Information

Financials

Timeline	Figures
Pre-IPO 2016 – 2018 - Capital Raised	US\$ 37m
IPO Dec 2018 – Capital Raised	US\$ 12m
Feb 2020 Registered Direct Offering	US\$ 10m
As at mid-March 2020 Cash + Undrawn Credit Facility	US\$ 20m+
Total Shares Issued	30,386,466
% of Company owned by Insiders and Founders	~69%

Based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing. Applies to all content on this slide.

∧ptorum

APTORUM GROUP LIMITED

investor.relations@aptorumgroup.com

T +852 2117 6611

F +852 2850 7286