UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549

FORM 6-K

REPORT OF FOREIGN PRIVATE ISSUER PURSUANT TO RULE 13a-16 OR 15d-16 UNDER THE SECURITIES EXCHANGE ACT OF 1934

For the month of June 2022

Commission File Number: 001-38764

APTORUM GROUP LIMITED

17 Hanover Square London W1S 1BN, United Kingdom (Address of principal executive offices)

Indicate by check mark whether the registrant files or will file annual reports under cover of Form 20-F or Form 40-F: Form 20-F 🗵 Form 40-F
Indicate by check mark if the registrant is submitting the Form 6-K in paper as permitted by Regulation S-T Rule 101(b)(1):
Indicate by check mark if the registrant is submitting the Form 6-K in paper as permitted by Regulation S-T Rule 101(b)(7):

We are filing this report to disclose certain power point presentations the Company shares with potential business partners; such presentations are incorporated herein by reference.

Neither this report nor the exhibits constitute an offer to sell, or the solicitation of an offer to buy our securities, nor shall there be any sale of our securities in any state or jurisdiction in which such offer, solicitation or sale would be unlawful prior to the registration or qualification under the securities laws of any such state or jurisdiction.

The information in this Form 6-K, including the exhibits shall not be deemed to be "filed" for the purposes of Section 18 of the Securities Exchange Act of 1934, as amended, and shall not be incorporated by reference into any filing under the Securities Act of 1933, as amended, except as shall be expressly set forth by specific reference in such filing.

This Form 6-K is hereby incorporated by reference into the registration statements of the Company on Form S-8 (Registration Number 333-232591) and Form F-3 (Registration Number 333-235819) and into each prospectus outstanding under the foregoing registration statements, to the extent not superseded by documents or reports subsequently filed or furnished by the Company under the Securities Act of 1933, as amended, or the Securities Exchange Act of 1934, as amended.

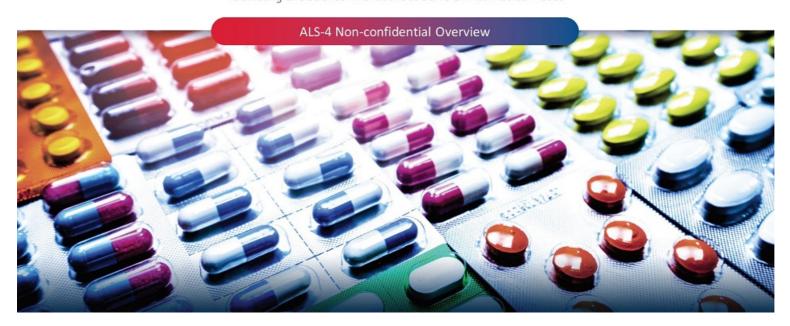
EXHIBIT INDEX

Exhibit No.	Description
99.1 99.2	Power Point Presentation Power Point Presentation

SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned, thereunto duly authorized.

Aptorum Group Limited


Date: June 9, 2022 By: /s/ Sabrina Khan

Name: Sabrina Khan

Title: Chief Financial Officer

Facilitating Life Science Innovations to Serve Unmet Medical Needs

Disclaimer

This document includes statements concerning Aptorum Group Limited and its future expectations, plans and prospects that constitute "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. For this purpose, any statements contained herein that are not statements of historical fact may be deemed to be forward-looking statements. In some cases, you can identify forward-looking statements by terms such as "may," "should," "expects," "plans," "anticipates," "could," 'intends," "target," "projects," "contemplates," "believes," "estimates," "predicts," "potential," or "continue," or the negative of these terms or other similar expressions, Aptorum Group has based these forward-looking statements, which include statements regarding projected timelines for application submissions, trials and commercialization and market potential of related products, largely on its current expectations and projections about future events and trends that it believes may affect its business, financial condition and results of operations. These forwardlooking statements speak only as of the date of this document and are subject to a number of risks, uncertainties and assumptions including, without limitation, risks related to its announced management and organizational changes, the continued service and availability of key personnel, its ability to expand its product assortments by offering additional products for additional consumer segments, development results, the company's anticipated growth strategies, anticipated trends and challenges in its business, and its expectations regarding, and the stability of, its supply chain, and the risks more fully described in Aptorum Group's Form 20-F and other filings that Aptorum Group may make with the SEC in the future. As a result, the projections included in such forward-looking statements are subject to change and results may differ materially from those disclosed herein. Aptorum Group assumes no obligation to update any forward-looking statements contained in this document as a result of new information, future events or otherwise. THIS PRESENTATION DOES NOT CONSTITUTE AN OFFER TO SELL OR SOLICITANT OFFER TO BUY NEITHER SHALL THERE BE ANY SALE OF THESE SECURITIES IN ANY STATE IN WHICH SUCH OFFER, SOLICITATION OR SALE WOULD BE UNLAWFUL PRIOR TO REGISTRATION OR QUALIFICATION UNDER THE SECURITIES LAWS OF ANY SUCH STATE.

 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

Antibiotic-resistant Staphylococcus aureus infections represent a significant unmet need

$MRSA, VRSA \ and \ VISA \ are \ ranked \ as ``high \ priority'' \ development \ targets \ by the \ World \ Health \ Organisation^1$

- Staphylococcus aureus are gram-positive bacteria and the leading cause of skin and soft tissue infections, but can cause serious infections such as pneumonia, bacteraemia, and bone infections
- Vancomycin is the most frequently prescribed treatment for methicillin-resistant
 Staphylococcus aureus (MRSA); however, vancomycin has been >60 years in use and
 has been shown to have slow bactericidal activity, poor anti-staphylococcal activity,
 poor tissue penetration, high rates of infection relapse, and can cause resistance
 (vancomycin-intermediate (VISA) and vancomycin-resistant (VRSA))⁴

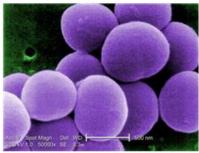


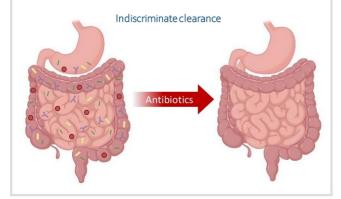
Image: CDC.gov

- MRSA (pneumonia) mortality rate is between 30% 55.5%^{2,3}
- MRSA (skin and soft tissue) recurrence rate is approximately 70%^{2,3}
- New efficacious and safe therapeutics are urgently needed

For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

The Aptorum approach: Combating emerging antibiotic resistance

Developing nor	-antibiotics	(non-bactericidal and	non-bacteriostatic).


- Targeting virulence factors to disarm bacteria and thereby reducing pathogenicity.
- Potentially less selective pressure and much less likely for bacteria to develop resistance.

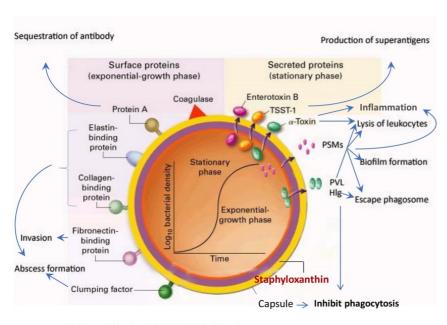
4 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS program: Value proposition

Antibiotic

- Antibiotic resistance in S. aureus has been discovered in most prescribed antibiotics for MRSA¹
- Broad spectrum and indiscriminate²
- Commonly affect normal flora, may lead to superinfection in case of drug resistance³

Anti-virulence


- ✓ Not bactericidal, potentially less selective pressure and much less likely for bacteria to develop resistance^{4,5}
- \checkmark "Disarms" the bacteria by reducing pathogenicity^{4,5,6}
- ✓ Bacterial clearing is mediated by host immunity^{4,5}

1. Refer to "ALS-4: Approved Drugs for MRSA Infections" for complete set of sources; 2. P.T. 2016 Feb; 41(2): 126-128; 3. Infect Dis. 2018 Ian; 30; 217(4): 528-5(5); 4. Based on Aptorum's Internst tests/experimentation and has not yet been verified by clinical trials or third party testing; 5. Millio. 2015 Feb; (b): e102124-27; 6. J EXP, Med. 2005; 1018; 30; 20(2): 209-15.

For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS program: Value proposition

- Bacterial infections are mediated by pathogenic or opportunistic bacteria
- Successful infections depends on host immunity and the pathogen's virulence
- Virulence factors are the molecules that assist the bacteria to colonize the host at the cellular level; these factors are either secretory, membrane associated or cytosolic in nature
- Gram positive bacteria (e.g, Staphylococcus aureus) rely heavily on multiple arrays of virulence factors
- Targeting bacterial virulence is an alternative approach to antimicrobial therapy

The figure is modified from Rachel J. Gordon, et al. Clin Infect Dis. (2008)

For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS-4, an anti-virulent, non-bactericidal drug candidate for S. aureus infections incl. MRSA

$\textbf{ALS-4} \ is \ a \ first-in-class, or al \ the rapeutic \ that \ has \ the \ potential \ to \ complement \ vancomycin$

- Novel mechanism: Anti-virulence, non-bactericidal approach as it targets virulence properties of S. aureus
- **Oral form**: An orally administered small molecule in line with "IV to oral antibiotic" switch policies; therefore, it has the potential for increased cost-effectiveness through out-patient treatment
- Potential as a mono- or combination therapy to overcome the shortcomings of vancomycin
- ALS-4 can potentially complement other bactericidal antibiotics as well; therefore, ALS-4 is not a direct competitor to antibiotics
- Potentially shows synergistic effects with other antibiotics

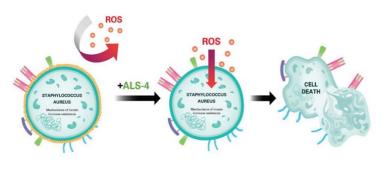
Desirable Characteristics	ALS-4	Vancomycin
Anti-virulent	✓	X
Non-bactericidal	✓	(Inhibits transpeptidation by binding to D-alanyl-D-alanine residues of the bacterial cell wall, leading to cell wall decomposition and bacterial lysis)
No observed resistance	✓	(Vancomycin-resistant <i>S. aureus</i> discovered in 2002¹)
Orally bioavailable	✓	(Oral only for gastrointestinal infection)
Good tissue penetration	√	X (Large molecule)

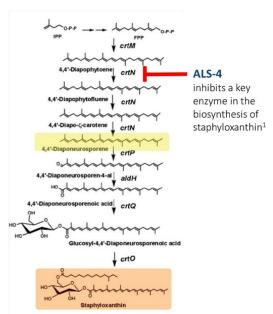
Centers for Disease Control and Prevention, https://www.cdc.gov/hai/settings/lab/ussa, lab.search.containment.htm

7 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

The role of staphyloxanthin in Staphylococcus aureus

Neutrophil EXTRACELLULAR Staphyloxanthin neutralizes ROS Ros Staphyloxanthin neutralizes ROS


- Neutrophils kill bacteria including Staphylococcus aureus intracellularly or extracellularly via Reactive Oxygen Species: ROS-oxygen radicals released by neutrophils trigger the subsequent bacterial damage processes.¹
- To counteract, staphyloxanthin, a carotenoid pigment, protects the bacteria by serving as an anti-oxidant to neutralize the ROS secreted by neutrophils. 1


1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975594.

8 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

Mechanism of action: Targeting staphyloxanthin synthesis of Staphylococcus aureus¹

- ALS-4 inhibits a key enzyme in the biosynthesis of staphyloxanthin.¹ In the
 absence of staphyloxanthin, the bacteria become susceptible to damage by
 ROS, triggering the usual series of mechanisms by neutrophils that ultimately
 leads to bacterial cell death.
- ALS-4 also shown that in the absence of staphyloxanthin, bactericidal activity is enhanced in the presence of antibiotics such as Vancomycin².

1. Figure adapted from MBio. 2017 Sep 5;8(5). pii: e01224-17.

2 The description of AL5-4 and related conclusory statements on AL5-4 on this slide are based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing

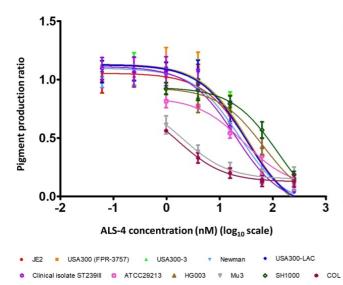
9 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

Inhibition of staphyloxanthin synthesis by ALS-4

ALS-4

- Inhibits S. aureus pigment production (staphyloxanthin) with an $IC_{50} = 20$ nM.
- This is visibly confirmed by the decolorization of the bacteria as ALS-4 is administered with increasing concentrations from 3.1 to 200nM.

DMSO control ALS-4 200nM 100nM 50nM 25nM 12.5nM 3.1nM

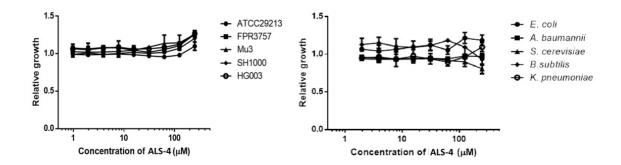

Figure adapted from MBio. 2017 Sep 5;8(5). pii: e01224-17.

9 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS-4 effectively inhibits staphyloxanthin formation across 11 strains of *S. aureus*

 $ALS-4 in hibits the production of staphyloxanthin in {\tt 11} common strains of {\it S. aureus in vitro}$

Strain	Туре	IC ₅₀ (nM)
SH1000	MSSA	70.5 ± 6
HG003	MSSA	54.4 ± 4
USA300-JE2	MSSA	37.7 ± 4
USA300 (FPR-3757)	CA-MRSA	30.8 ± 5
USA300-3	HA-MRSA	42.8 ± 6
Newman	MSSA	23.7 ± 1
USA300-LAC	MRSA	43.6 ± 5
ATCC29213	MSSA	30.0 ± 5
Clinical isolate ST239III	HA-MRSA	16.3 ± 8
Mu3	VISA	2.6 ± 1
COL	HA-MRSA	0.9 ± 1

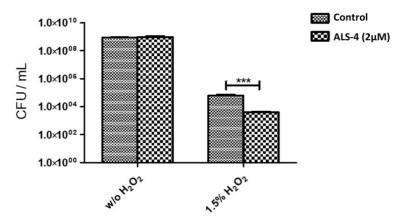

ALS-4 can inhibit staphyloxanthin production in major MRSA strains and also VISA and MSSA strains. ALS-4 can address and compensate suffering from vancomycin resistant strains of staphylococcus aureus due to the targeting of different mechanisms¹.

1 The description of ALS-4 and related conclusory statements on ALS-4 on this slide are based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or the party testing.

1 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS-4 does not directly inhibit bacterial growth in vitro

- Lack of direct selection pressure significantly decreases the risk of emergence of drug resistance.
- In the absence of neutrophils, ALS-4 does not inhibit growth in 5 strains of *S. aureus* (left) and 5 different species of bacteria (right). However, ALS-4 reduces the virulence factors of *S. aureus*, significantly reducing risks of mortality and morbidity.

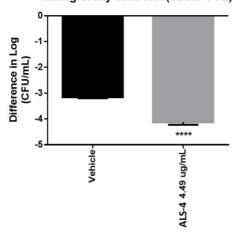


The description of ALS-4 and related conclusory statements on ALS-4 on this slide are based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing.

12 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS-4 increases sensitivity of *S. aureus* to oxidative damage

• ALS-4 reduces bacteria number by an additional 10-fold in the presence of hydrogen peroxide (mimicking ROS production by neutrophils), as demonstrated in the below graph (p<0.001).


Statistical significance (p < 0.05) was assessed with unpaired student t-test. * p < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

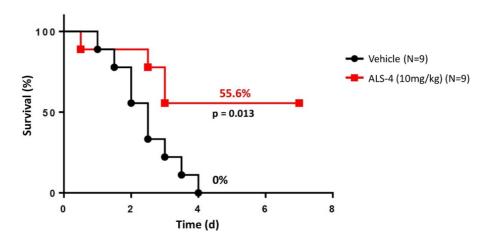
The description of ALS-4 and related conclusory statements on ALS-4 on this slide are based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing

13 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS-4 enhances neutrophil killing of MRSA

Human Neutrophil intracellular killing assay in MRSA (strain COL)

 $Bacterial\ density\ following\ treatment\ with\ human\ neutrophils\ in\ ALS-4\ or\ vehicle\ treated\ MRSA\ (strain\ COL).$


Data is presented as mean \pm SEM. Statistical significance (p < 0.05) was assessed with unpaired student t-test. * p < 0.05, ** P < 0.01, *** P < 0.001, *** P < 0.0001.

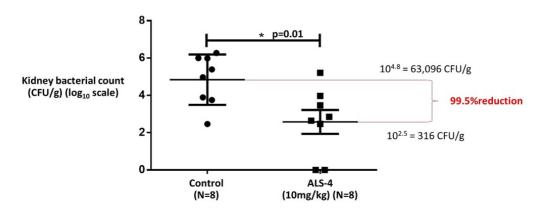
The description of ALS-4 and related conclusory statements on ALS-4 on this slide are based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing

4 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS-4 rescues rats infected with a lethal dose of MRSA in a bacteremia model

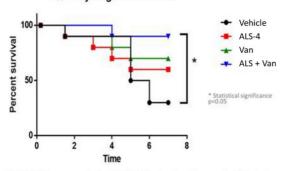
 $Oral \, administration \, of \, ALS-4 \, in \, a \, \, lethal \, MRSA \, (USA300) \, survival \, \textit{in vivo} \, model.$

- $\bullet~$ A lethal dose (10 $^{9}\,\text{CFU})$ of MRSA was introduced through the tail vein
- ALS-4 was administered **orally** 30 minutes after infection for twice a day thereafter


The description of ALS-4 and related conclusory statements on ALS-4 on this slide are based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing

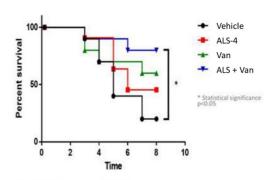
For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS-4 greatly reduces organ bacterial count in a bacteremia animal model


$Or all administration of ALS-4 in a non-lethal bactaremia {\it in vivo} \, model.$

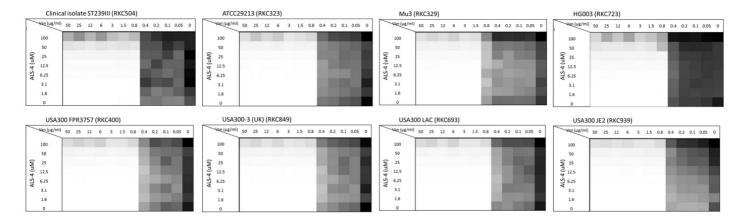
- Rats were challenged with a non-lethal dose (10⁷ CFU) of MRSA through the tail vein
- In order to simulate a more realistic clinical scenario, treatment was introduced 14-days after infection, where ALS-4 was administered orally twice a day at 10 mg/kg per animal for 7 days
- Please see appendix for results in kidney, lung, liver, spleen in comparison to vancomycin

Immediate Treatment Post Lethal Dose


20% bodyweight loss as HEP

N = 10, CFU per mouse is 6 x $10^7.$ All of the treatments were administrated through i.p. 15 hours after infection;

- (a) Vehicle
 (b) ALS-4: 4.5mg/kg
 (c) Vancomycin: 4.5mg/kg
 (d) Combo: 4.5mg/kg LM32+4.5mg/kg Vancomycin


Delayed Treatment

N = 10, CFU per mouse is $6x10^7$ ALS-4 at 6.75mg/kg/dose and treatment started 2 hrs post infection twice daily Vancomycin, 4.5 mg/kg/dose and treatment started 18 hrs after infection twice daily

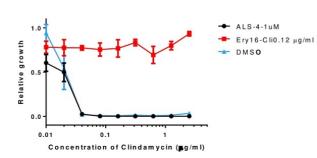
ALS-4 does not interfere with the action of vancomycin in-vitro

 $ALS-4\,does\,not\,affect\,the\,minimum\,inhibitory\,concentration\,(MIC)\,of\,van comycin\,in\,8\,strains\,of\,\textit{S. aureus.}$

- No effect on the MIC of vancomycin was observed in vitro when the concentration of ALS-4 was below 25µM
- ALS-4 is targeted to be efficacious at between 20-30nM, well within the above range.

The description of ALS-4 and related conclusory statements on ALS-4 on this slide are based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials or third party testing

18 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

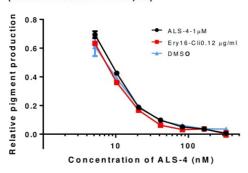

ALS-4 does not trigger antibiotic resistance in MRSA

Pre-treatment

Tubes	Day 1-4	Day 6-10
1	DMSO	DMSO
2	Ery 16 + CLI 0.12 μg/ml	Ery 16
3	ALS-4 1μM	ALS-4 1μM

(Clindamycin withdrawn between day 5-10)

Clindamycin resistance test after pre-treatment (BHI medium with 5 x 10⁴/well bacterial inoculum)


- Clindamycin resistance (MIC from 0.12 μg/ml to >5 μg/ml) appeared rapidly after a 10-day intermittent treatment
- The use of Ery was to ensure no contamination of environmental bacteria as USA 300 (LAC) is resistance Ery
- Controls without the addition of antibiotics showed no resistance to clindamycin
- For the full protocol, please see appendix

The description of AL5-4 and related conclusory statements on AL5-4 on this slide are based on Aptorum's internal tests/experimentation and has not yet been verified by clinical trials

9 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS-4 does not trigger its own resistance

ALS-4 efficacy test (Bacterial inoculum: 4 x 10⁷/ml)

BHI agar plates

Recovered bacteria after 11-day resistance-raising with 1μM ALS-4ca

Recovered bacteria after 11-day resistance-raising with DMSO as control

100nM ALS-4 No ALS-4 (all colonies turned white) (all colonies remained yellow)

No bacterial resistance to ALS-4 detected after continuous incubation of the bacteria in the presence of 1μ MALS-4 for 11 days.

ALS-4: chemistry, manufacturing and controls (CMC)

ALS-4 is an attractive candidate for formulation

- · Only 1 physical form identified from polymorph screening
- · Physically and chemically stable
- · Not hygroscopic

API (active pharmaceutical ingredient) manufacturing

- · GLP toxicology batch of API has been completed
- · GMP manufacturing of API has been completed
- · GMP manufacturing of drug product has been completed for Phase 1


ALS-4 has low solubility in water

- · Developed an enabling formulation to improve bioavailability
- · An oral liquid formulation was used in Phase 1 clinical trial

21 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

Phase 1 trial in Canada (Completed)

A randomized, double-blind, placebo-controlled, dose-escalation study to assess the safety, tolerability, and pharmacokinetics of single (SAD) and multiple ascending doses (MAD) of ALS-4 administered orally to healthy male and female adult volunteers

Aptorum Group has announced completion of the trial

- · No subjects from both SAD and MAD cohorts dropped out of the studies and no Serious Adverse Events were observed
- In addition, no clinically relevant changes in respect of vital signs, electrocardiogram, clinical laboratory test results and physical examinations were observed compared to baselines

For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

Phase 1 (Canada; completed)

Phase 2 (US) (under planning)

Registrational study (future)

Filing

A randomized, double-blind, placebo-controlled, dose-escalation study with oral ALS-4

Outcomes: Safety, tolerability, and pharmacokinetics of SAD and MAD of oral ALS-4 Population: Healthy adult volunteers (N=72)

A randomized, double-blind study with ALS-4 in combination with SOC compared to SOC alone

Outcomes: Safety, efficacy, microbiologic

Population: Adults with MRSA bacteraemia or skin or soft tissue infections who failed to respond to initial SOC treatment (culture positive) or with clinical responses

A randomized, double-blind study with ALS 4 in combination with vancomycin compared to vancomycin alone

Outcomes: Safety, efficacy, microbiologic eradication

Population: Adults with MRSA bacteraemia or skin and soft tissue infections who failed to respond to initial vancomycin treatment (culture positive) or with clinical responses

An unmet, orphan indication will also be selected to enable NDA filing via the US LPAD (Limited population pathway for antibacterial and antifungal drugs)

SUBMISSION

Market opportunities

• The global methicillin-resistant *Staphylococcus aureus* drugs market was valued at approximately US\$ 2.9 Bn in 2016 and projected to each **over US\$ 3.9** Bn by 2025¹

ALS-4 market opportunities

Key indications

US LPAD opportunities

'Blue Sky' opportunities

ALS-4 in combination with SOC for MRSA (bacteraemia, pneumonia, skin & soft tissue, bone & joint, endocarditis)

A small subset of the key indications, for example, kidney failure patients suffering from MRSA bacteraemia, chronic MRSA bacteraemia, etc.

ALS-4 monotherapy as an outpatient rophylactic treatment in high risk population (e.g. aged patients undergoing surgery)

1. "Methicillin-resistant Staphylococcus Aureus (MKSA) Drugs Market - Global Industry Analysis, Size, Share, Growth, Trends, and For

For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

ALS-4: IP status

• The patent and patent applications cover the composition of small molecule compound and the method of treating microbial infection using same mechanism

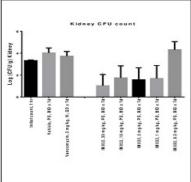
ALS-4						
Patent Family	Compound / Composition	Method of Treatment	Formulation / CMC	Dosage	Physical Form	Other (e.g. Combination treatment or special route of administration)
Status	Granted*	Granted*	Planned for filing	Not yet filed	Not yet filed	Not yet filed
Expiration date	N/A	N/A	N/A	N/A	N/A	N/A
Region and term	Production and N National applicat regions including and Hong Kong (a	Methods for Treatmen ions based on PCT api EP, China, Australia, E all pending). nts will expire in 2038	(US Pat. No. 11,040,949 a t of Bacterial Diseases"). plication (PCT App. No. PCT Brazil, Canada, Chile, Eurasi	7/182018/055459) h a, Israel, Japan, Mal	ave been filed in major aysia, New Zealand, Sir	jurisdictions and ngapore, South Korea

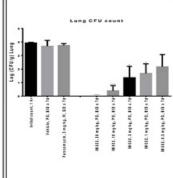
Approved drugs for MRSA Infections

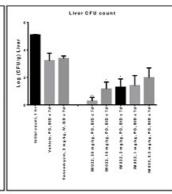
Frequently prescribed antibiotics for MRSA infections¹

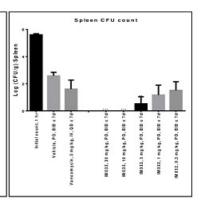
The only 2 FDA approved antibiotics for MRSA bacteraemia

Product (Company)	Antibiotic Class	Indication(s)	RoA	Dose	Cost of Treatment (duration)	Notes
Vancomycin (Generic)	Glycopeptide	Severe infections caused by MRSA	IV / oral*	2g/day	USD 101-144 (7-10 days)	 Currently, the most frequently prescribed antibiotic for MRSA suspected infections^{1,2} In clinical use for >60 years³, vancomycin-resistant <i>S. aureus</i> (VRSA) was first discovered in 2002⁴
Daptomycin (Merck)	Lipopeptide	ABSSSI, S. aureus bacteraemia	IV	4-6mg/kg/day	USD 6,736-23,710 ⁵ (14-42 days)	 In clinical use since 2003⁶ Daptomycin resistance described in S. aureus as early as 2006⁷
Linezolid (Pfizer)	Oxazolidinone	ABSSSI, CABP, HABP, uSSSI	IV / oral	0.8-1.2g/day	IV: USD 1,920-5,376 Oral: USD 2,978- 11,429 (10-14 days)	In clinical use since 2003 ⁸ . Entirely synthetic, not expected to develop clinical resistance ⁹ , however Linezolid resistance encountered clinically since 2010 ⁹
Ceftaroline fosamil (Actavis)	Cephalosporin	ABSSSI, CABP	IV	1.2g/day	USD 1,831-5,127 (5- 14 days)	 In clinical use since 2010¹⁰ Ceftaroline resistance encountered clinically since 2016¹¹
Tigecycline (Pfizer)	Glycycycline	ABSSSI, CABP, CIAI	IV	0.1-0.2mg/day	USD 1,888-4,977 (5- 14 days)	 In clinical use since 2005¹² Tigecycline resistance encountered clinically in developing countries since 2017^{13,14}
Televancin (Theravance Biopharma)	Lipoglycopeptide	ABSSSI, HABP, VABP	IV	10mg/kg/day	USD 3,002-10,568 (7-21 days)	In clinical use since 2009 ¹⁵ Vancomycin resistance leads to a 4-8x increase in telavancin MIC (minimum inhibitory concentration) ¹⁶


ABSSSI: acute bacterial skin and skin structure infection; CABP: community-acquired bacterial pneumonia; HABP: hospital-acquired bacterial pneumonia; (IAI): complicated intra-abdominal infection; VABP: ventilator-associated bacterial pneumonia; 1 (IAI): complicated intra-abdominal infection; VABP: ventilator-associated bacterial pneumonia; * Only for intestinal infections; 1 Reproduced from "Companies Take Aim at MRSA Infections* P.T. 2016 Feb; 41(2): 126–128; 2. Clin Infect Dis. 2006 Ian 1;42 Suppl 1:S5-12; 4. Centers for Disease Control and Prevention. https://www.accessdata.fda.gov/frag/864/78-169; Abstractions at dosage of Geng/Rg: 6. Pha. https://www.accessdata.fda.gov/frag/864/79-127-2_Ubicin.cfm; 7. Int.) Antimicrob Agonts. 2006 Cct; 28(1):280–73; 8. PDA. https://www.accessdata.fda.gov/drugastfda_doss/nda/2002/21-330.003 2/1323.003 2/voxTOC.cfm; 9. Pharmacouricats [Basel], 2010 Iul; 3)73; 1988–2006; 10. PDA. https://www.accessdata.fda.gov/drugastfda_doss/nda/2002/21-821_1/yagolf-21-82


For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.


ALS-4: Oral administration in a MRSA non-lethal bacteraemia mouse model


 $The \textit{results} shown in this \textit{slide} \textit{are} \textit{based} \textit{on} \textit{Aptorum's} \textit{internal} (\textit{invitro/invivo}) \textit{tests/experiments} \textit{that} \textit{have} \textit{not} \textit{been} \textit{verified} \textit{inclinical trials} \textit{and/orthird} \textit{party} \textit{testing} \textit{invitro/invivo} \textit{tests/experiments} \textit{that} \textit{have} \textit{not} \textit{been} \textit{verified} \textit{inclinical trials} \textit{and/orthird} \textit{party} \textit{testing} \textit{that} \textit{that} \textit{have} \textit{not} \textit{been} \textit{verified} \textit{inclinical trials} \textit{and/orthird} \textit{party} \textit{testing} \textit{that} \textit{that} \textit{that} \textit{have} \textit{not} \textit{been} \textit{verified} \textit{inclinical trials} \textit{and/orthird} \textit{party} \textit{testing} \textit{that} \textit{t$

 Dose-dependent efficacy of ALS-4 (compound IM032) shows a statistically significant reduction in bacteria count across major organs relative to vancomycin as a control.

ALS-4 and drug resistance

Protocol

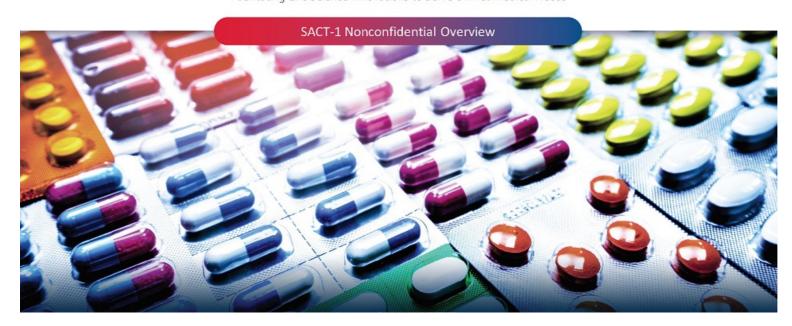
- 1. Inoculum preparation: USA300-3 (LAC) was cultured overnight in BHI broth at 37°C, 250 rpm.
- 2. Subculture preparation: $60 \,\mu l$ overnight culture was added to $6 \,m l$ BHI broth with different drugs.

Tubes	Day 1-4	Day 6-10
1	DMSO	DMSO
2	Ery 16 + CLI 0.12 μg/ml	Ery 16
3	ALS-4 1µM	ALS-4 1μM

- 3. Clindamycin (CLI): 0.12 µg/ml; Erythromycin (Ery): 16 µg/ml; ALS-4: 1 µM. The use of Ery was to ensure no contamination of environmental bacteria as USA 300 (LAC) is resistance Ery.
- 4. Culturing: during culturing, medium was changed everyday by centrifugation of the bacteria and replacing the supernatant with new medium plus DMSO or antibiotics or compounds as specified.
- 5. Bacteria collection: on day 11, 1 ml bacteria was centrifuged and resuspended in PBS with 10% DMSO for further testing.
- 6. MIC testing: in BHI medium in 96-well plate and cultured for 16h
- 7. Pigment production: in 96 deep-well plate and cultured for 36 h

APTORUM GROUP LIMITED

investor.relations@aptorumgroup.com


T +852 2117 6611

F +852 2850 7286

Facilitating Life Science Innovations to Serve Unmet Medical Needs

Disclaimer

This document includes statements concerning Aptorum Group Limited and its future expectations, plans and prospects that constitute "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. For this purpose, any statements contained herein that are not statements of historical fact may be deemed to be forward-looking statements. In some cases, you can identify forward-looking statements by terms such as "may," "should," "expects," "plans," "anticipates," "could," "intends," "target," "projects," "contemplates," "believes," "estimates," "predicts," "potential," or "continue," or the negative of these terms or other similar expressions. Aptorum Group has based these forward-looking statements, which include statements regarding projected timelines for application submissions, trials and commercialization and market potential of related products, largely on its current expectations and projections about future events and trends that it believes may affect its business, financial condition and results of operations. These forwardlooking statements speak only as of the date of this document and are subject to a number of risks, uncertainties and assumptions including, without limitation, risks related to its announced management and organizational changes, the continued service and availability of key personnel, its ability to expand its product assortments by offering additional products for additional consumer segments, development results, the company's anticipated growth strategies, anticipated trends and challenges in its business, and its expectations regarding, and the stability of, its supply chain, and the risks more fully described in Aptorum Group's Form 20-F and other filings that Aptorum Group may make with the SEC in the future. As a result, the projections included in such forward-looking statements are subject to change and results may differ materially from those disclosed herein. Aptorum Group assumes no obligation to update any forward-looking statements contained in this document as a result of new information, future events or otherwise. THIS PRESENTATION DOES NOT CONSTITUTE AN OFFER TO SELL OR SOLICITANT OFFER TO BUY NEITHER SHALL THERE BE ANY SALE OF THESE SECURITIES IN ANY STATE IN WHICH SUCH OFFER, SOLICITATION OR SALE WOULD BE UNLAWFUL PRIOR TO REGISTRATION OR QUALIFICATION UNDER THE SECURITIES LAWS OF ANY SUCH STATE.

2 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

Executive summary

- SACT-1 is a repurposed oral suspension in development as an adjunctive therapy to standard of care in relapsed or refractory high-risk neuroblastoma in pediatric patients.
- SACT-1 targets the MEK5-ERK5 pathway and demonstrated to suppress MYCN expression, a poor
 prognostic factor of therapeutic outcome and resistance in neuroblastoma.
- SACT-1 has demonstrated remarkable potential in enhancing tumor cell death through different pathways.
- Preclinically, in combination with standard chemotherapy, SACT-1 provided enhanced efficacy in a xenograft mouse model of neuroblastoma. We propose the novel application of SACT-1 as a new treatment option for extending survival in high-risk neuroblastoma.

3 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome.

Executive summary (cont'd)

- Our completed Phase 1 trial showed the safe use of SACT-1. The distinctive PK between SACT-1 and Edurant® further strengthen the advantage of our product.
- Aptorum is initiating an "End of Phase 1 (EOP1) Meeting" with the US FDA to seek approval to conduct a Phase 1b/2a trial.
- Received FDA orphan designation for the treatment of neuroblastoma in Jan 2022.
- Received in 2021 the first granted patent in treatment of various cancers including but not limited to neuroblastoma.

MEK5 and ERK5 as potential therapeutic targets for cancers in recent years

Translational Oncology

Diverse and converging roles of ERK1/2 and ERK5 pathways on mesenchymal to epithelial transition in breast cancer

Clinical Significance and Regulation of ERK5 Expression and Function in Cancer

Matilde Monti ¹³, Jacopo Celli ¹³, Francesco Missale ¹³, Francesca Cersosimo ¹, Mariapia Russo ¹, Elisa Belloni ¹, Anna Di Matteo ¹, Silvia Lonardi ¹, William Vermi ¹³, Claudia Ghigna ¹⁴ and Emanuele Giurisato ¹⁴*

... See all authors v

Clinical, genetic and pharmacological data support

Adrián Sánchez-Edez, María Florencia Re-Louhau, Pablo Rodríguez-Núñez, Dolores Ludeña, Sofia Matilla-

npj Precision Oncology 5, Article number: 78 (2021) | Cite this article

PMCID: PMC8131078 PMID: 34026925

Cancer Letters

First published: 16 October 2021 | https://doi.org/10.1111/jcmm.16990

ORIGINAL ARTICLE | 🗈 Open Access | 🔞 🕦

Implication in EGF biology

dependent apoptosis

Inhibition of MEK5/ERK5 signaling overcomes acquired resistance to the third generation EGFR inhibitor, osimertinib, via enhancing Bim-

Marta Ortega-Muelas, Olga Roche, Diego M. Fernández-Aroca, José A. Encinar, David Albandea-Rodríguez

Wen Zhao ***, Danki Yu ***, Zhen Chen *, Wellong Yao ***, Jin Yang *, Suresh S. Ramalingam *, Shi-Yong Sun ** A

ERK5 signalling pathway is a novel target of sorafenib:

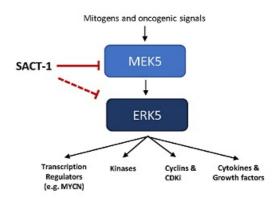
targeting the MEK5/ERK5 module in lung cancer

Almazán, Atanasio Pandiella & Azucena Esparis-Ogando ™

Oncoscience, 2021; 8: 64-71.

Published online 2021 May 18. doi: 10.18632/oncoscience.535

Constitutive activation of MEK5 promotes a mesenchymal and migratory cell phenotype in triple negative breast cancer


Margarite D. Matossian, 1, Van T. Hoang, 1, Hope E. Burks, 1, Jacqueline La, 1, Steven Elliott, 1 Courtney Brock, 1 Douglas B. Rusch, ² Aaron Buechlein, ³ Kenneth P. Nephew, ³ Akshita Bhatt, ⁴ Jane E. Cavanaugh, ⁴ Patrick T. Flaherty, ⁵ Bridgette M. Collins-Burow, 1, 6 and Matthew E. Burow II 1

So far no approved products are available

© Copyright 2022 Aptorum Group Limited APTORUM

Proposed mode of action

- MEK5-ERK5 pathway is reported to regulate MYCN oncogene expression (Kang et al., 2006; Umapathy et al., 2014; van Hoang et al., 2017) which is known to contribute to the poor prognosis of patients with neuroblastoma
- Aptorum discovered **SACT-1** has a K_D of 150 nM against MEK5, well below the C_{SS} in humans (290 nM to 1.5 μ M at 25 mg to 150 mg QD), we proposed its use in modulation of the MEK5-ERK5 pathway
- To the best of our knowledge, SACT-1 is the <u>only potential drug</u>
 <u>candidate already in the market</u> to downregulate MYCN
 expression through modulation of MEK5-ERK5 pathway,
 thus the reproposed drug programme for relapsed/refractory
 neuroblastoma.

Roles in cancer

- Tumour cell proliferation and survival
- · EMT and metastasis
- CSC-like traits
- · Therapy resistance
- Immunosuppression
- Angiogenesis

Targeted product profile

Preclinical Toxicology	Not relevant as this is a repurposed drug
PK/PD Model	To be determined in Phase 1b/2a trial
CM&C	Oral suspension with low complexity for production
Dose/dose schedule	RP2D will be determined in Phase 1b
Half-life	To be determined in Phase 1b/2a Trial
Adverse Event Profile	None of the subjects were discontinued from the study because of an adverse event. None of the adverse events experienced by subjects was judged as serious
Other AE Profile	None
Efficacy Profile	To be determined in Phase 1b/2a Trial
Health Outcome	Improve progression free, and overall, survival in high-risk neuroblastoma patients
Pharmacology	SACT-1 is proposed to modulate MEK5-ERK5 pathway subsequently reducing the poor prognosis factor MYCN

Neuroblastoma - market overview

PREVALENCE

- ~700 cases of high-risk neuroblastoma patients each year in the US³ and we estimated EU has 1.5x this number of cases, c. 1050 high risk neuroblastoma patients per year
- Accounts for ~15% of all cancer-related deaths in the pediatric population4

ORPHAN DRUG DESIGNATION⁵

- $\bullet\,$ SACT-1 has gained FDA Orphan Drug Designation for the treatment of neuroblastoma in 2022.
- Designated orphan drugs receive 7 years of market exclusivity in US and 10 years of marketing exclusivity in EU
 Patents on new indication and reformulation of SACT-1, if granted, will provide up to 20 years of patent exclusivity from the application date in parallel to the market exclusivity

1. Pediatr Rev. 2018 Feb;39(2):57-67; 2. "Pediatric Neuroblastoma Treatment Marketsize 2022: Sales, Price, Revenue, Gross Margin, News Product Launches, Upcoming Trend Analysis and Forecast 2027"(2022). Market Watch. 3. Curr Oncol Rep. 2009 Nov;11(6):431-8-4. Puediatr Orugs, 2011 Aug 1;13(4):245-555. https://www.fda.gov/about-fda/office-apocial-medical-programs/office-orphan-products-development

8 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome. © Copyright 2022 Aptorum Group Limited APTORUM

Application of SACT-1 as a novel treatment option for neuroblastoma

Standard of care for high-risk neuroblastoma

- Surgery
- · Chemotherapy
- · Radiotherapy
- · Immunotherapy (anti-GD2 monoclonal antibodies)
 - o Dinutuximab beta (Qarziba)
 - o Dinutuximab (Unituxin)
 - o Naxitamab (Danyelza)

SACT-1 uses a unique mechanism and works in combination with other therapies rather than competing or replacing the current therapy

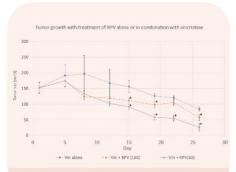
SACT-1 works in combination with standard of care chemotherapy and / or new therapies for neuroblastoma. It downregulates MYCN expression through the MEK5-ERK5 pathway and is proposed to enhance anti-tumor effect and reduce occurrence of drug resistance.

9 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome. © Capyright 2022 Aptorum Group Limited APTORUM

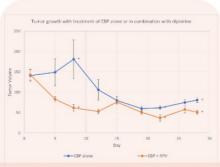
In vitro and in vivo efficacy

In vitro

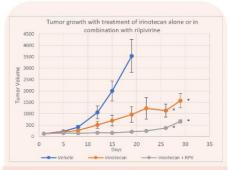
- SACT-1 demonstrated inhibition of all tested neuroblastoma cell lines (IMR-32, SK-N-BE(2), SK-N-SH, SH-SY5Y)
- In combination with standard chemotherapy for neuroblastoma, SACT-1 in general provides additive to synergistic
 efficacy¹


In vivo

 Aptorum conducted mouse xenograft studies with a primary objective of assessing the efficacy of SACT-1 alone, and with other chemotherapeutic agents:


Combination Treatment		Enhanced tumour shrinkage compared to monotherapy
SACT-1 + Cisplatin	SOC First-line Treatment	Yes
SACT-1 + Carboplatin	SOC First-line Treatment	Yes
SACT-1 + Vincristine	SOC First-line Treatment	Yes
SACT-1 + Irinotecan	SOC for relapse	Yes

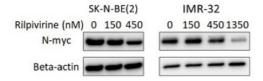
In vivo efficacy - neuroblastoma xenograft studies in mice


Cont'd

SACT-1 (RPV) dosed at 60 and 160 mg/kg (PO; daily x 21) potentiates the antitumor effects of vincristine (IP; QWK x3) in the neuroblastoma xenograft model

The addition of SACT-1 (RPV) (160 mg/kg; PO; daily x 21) demonstrated greater tumor volume reduction compared to carboplatin (80mg/ kg; IP; QWK x3) alone in the neuroblastoma xenograft model

The addition of SACT-1 (RPV) (80 mg/kg; PO; daily x 21) demonstrated greater tumor volume reduction compared to irinotecan (80 mg/kg; IP; QWK x3) alone in the neuroblastoma xenograft model


IP = Intraperitoneal; PO = oral; QWK = weekly; RPV = SACT-1; Vin = vincristine; CBP = carboplatin; *P < 0.05 = vincristine; CBP = carboplatin; *P < 0.05 = vincristine; CBP = vincristine; V

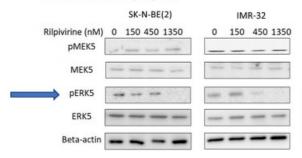
11 For illustrative purposes only. There is no guarantee of any project being completed or having a specific outcome. © Copyright 2022 Aptorum Group Limited APTORUM

Mechanistic studies - decrease of MYCN expression

- MYCN is involved in regulating various biological activities, such as apoptosis, proliferation, and angiogenesis in neuroblastoma (Huang and Weiss, 2013) and contributing to drug response
- SACT-1 at 150 to 1350 nM reduced MYCN protein levels in MYCN overexpressed neuroblastoma cell lines SK-N-BE(2) and IMR-32

Decrease of MYCN Expression

The effects of SACT-1 on MYCN expression.


Representative western blot analysis images of MYCN expression in response to SACT-1 at 150 to 1350 nM for 2 and 24 hours in SK-N-BE(2) and IMR-32 cells, respectively.

Mechanistic studies - ERK5 phosphorylation

- SACT-1 was found to have a binding constant (K_D) of 150 nM against MEK5 in a previous study by employing KdELECT Kinase Assay Panel
- Expectedly, ERK5 phosphorylation in IMR-32 and SK-N-BE(2) cells was decreased after SACT-1 treatment for 2 hours at 150 nM to 1350 nM

Reduction of ERK5 Phosphorylation

The effects of SACT-1 on ERK5 phosphorylation. Representative western blot analysis images of phospho-MEK5, MEK5, phospho-ERK5, and ERK5 expressions in response to SACT-1 at 150 to 1350 nM for 2 hours in MYCN overexpressed SK-N-BE(2) and IMR-32 cells.

Phase I study on bioavailability/ food effect

Relative Bioavailability

- Comparative bioavailability analysis between administration of SACT-1 under fasted condition vs. fed condition and between SACT-1 vs. Edurant® tablets (both under fed conditions).
- * SACT-1 fed dosing resulted in 90% increased AUC and 100% increased $\rm C_{max}$ with respect to SACT-1 fasted
- Results of SACT-1 vs Edurant® showed ~40% higher exposure for AUC and 20% higher C_{max} for SACT-1

Safety

- The study treatments in Phase 1 (administration of SACT-1 under fasted and fed condition) were well tolerated:
 - All reported adverse events were considered grade 1 or "mild" and had an outcome of "resolved"
 - No subjects were discontinued from study participation because of adverse events
 - No serious adverse events were reported during the study.
- The effect of study drug on the QTc interval is mild and remains within clinically acceptable limits

PK of SACT-1 administered under fed and fasting condition; Least-squares means for test to reference and

PK parameter	Fed condition (ref; n=14)	Fasting condition (n=14)
AUC _{0-tlast} (ISCV)	-	189.87% (15.4%)
AUC _{0-∞} (ISCV)	-	189.43% (17.5%)
C _{max} (ISCV)	-	205.25% (25.3%)

PK of SACT-1 vs Edurant® tablets administered under fed condition; Least-squares means for test to reference and

PK parameter	SACT-1 (ref; n=14)	Edurant® tablets (n=14)
AUC _{0-tlast} (ISCV)	-	139.01% (20.5%)
AUC _{D∞} (ISCV)	-	137.28% (21.8%)
C _{max} (ISCV)	-	119.52% (29.1%)

Clinical Development Plan

- · Phase 1: Open-label, Randomized, 3 period, 3- sequence, Single-dose Crossover Bioavailability and Food Effect Study of SACT-1 and Edurant® Tablets in Healthy Adult Volunteers (NCT05358756)
- · Phase 1b/ 2a: A Multiple Ascending Dose Trial to Determine the Safety, Pharmacokinetic, and Activity of SACT-1 as Adjunctive Therapy in Children with High-risk or Relapsed Neuroblastoma
 - o Target engagement & modulation to be determined in this study
 - o Location: US or other countries

Phase 1b/2a trial: Proposed Primary and Secondary Objectives

Phase 1b					
Primary Objective	Evaluate the safety and tolerability of SACT-1 in combination with chemotherapy Determine recommended Phase 2 dose (RP2D) of SACT-1				
Secondary Objective	Characterize the pharmacokinetic (PK) profile of SACT-1				
Exploratory Objective	Evaluate preliminary activity of SACT-1				
Phase 2a					
Primary Objective	 Evaluate antitumor activity of SACT-1 in combination with chemotherapy as measured by objective response rate (ORR). Evaluate the safety and tolerability of the RP2D of SACT-1 in combination with chemotherapy 				
Secondary Objective	 Evaluate antitumor activity of SACT-1 in combination with chemotherapy as measured by other parameters Determine the PK characteristics of SACT-1 when given in combination with chemotherapy 				
Exploratory Objective	Evaluate biomarkers of response (MYCN) in participants treated with SACT-1				

Intellectual property

Exclusive IP					
Title	Country	Application Date	Expiration date	Status	
Composition Including SACT-1 and Method for Treating Tumors or Cancer	us	27 Nov 2020	27 Nov 2040	Granted	
Composition Including SACT-1 and Method for Treating Tumors or Cancer	US	5 Oct 2021	n/a	Pending	
Composition Including SACT-1 and Use for Treating Tumors or Cancer	PCT	27 Nov 2020	n/a	Pending	

o For PCT, national phase applications have been filed in Australia, Canada, China, EU, Indonesia, Japan, Korea, Malaysia and Singapore

APTORUM GROUP LIMITED

investor.relations@aptorumgroup.com

T +852 2117 6611

F +852 2850 7286